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Abstract
In the present paper, the well-known Noether’s identity, which represents
the connection between symmetries and first integrals of Euler–Lagrange
equations, is rewritten in terms of the Hamiltonian function. This approach,
based on the Hamiltonian identity, provides a simple and clear way to find first
integrals of canonical Hamiltonian equations without integration. A discrete
analog of the Hamiltonian identity is developed. It leads to a connection
between symmetries and first integrals of difference Hamiltonian equations
that can be used to conserve the structural properties of Hamiltonian equations
under discretizaton. The results are illustrated by a number of examples for
both continuous and difference Hamiltonian equations.

PACS numbers: 45.20.Jj, 02.30.Rz

1. Introduction

In the present paper, we are interested in canonical Hamiltonian equations

q̇i = ∂H

∂pi

, ṗi = −∂H

∂qi
, i = 1, . . . , n, (1.1)

which can be obtained by the variational principle from the action functional

δ

∫ t2

t1

(pi q̇
i − H(t, q, p)) dt = 0 (1.2)

in the phase space (q, p), where q = (q1, q2, . . . , qn), p = (p1, p2, . . . , pn) (see, for example,
[1, 2]).

Let us note that the canonical Hamiltonian equations (1.1) can be obtained by the action
of the variational operators

δ

δpi

= ∂

∂pi

− D
∂

∂ṗi

,
δ

δqi
= ∂

∂qi
− D

∂

∂q̇i
, i = 1, . . . , n, (1.3)
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where D is the operator of total differentiation with respect to time

D = ∂

∂t
+ q̇i ∂

∂qi
+ ṗi

∂

∂pi

+ · · · , (1.4)

on the function

piq̇
i − H(t, q, p).

The Legendre transformation relates Hamiltonian and Lagrange functions:

L(t, q, q̇) = piq̇
i − H(t, q, p), (1.5)

where p = ∂L
∂q̇ , q̇ = ∂H

∂p . It makes it possible to establish the equivalence of the Euler–Lagrange
and Hamiltonian equations [3]. It should be noted that the Legendre transformation is not a
point one. Hence, there is no conservation of Lie group properties of the corresponding Euler–
Lagrange equations and Hamiltonian equations within the class of point transformations.

Lie point symmetries in the space (t, q, p) are generated by operators of the form [4–6]

X = ξ(t, q, p)
∂

∂t
+ ηi(t, q, p)

∂

∂qi
+ ζi(t, q, p)

∂

∂pi

. (1.6)

The standard approach to symmetry properties of the Hamiltonian equations is to consider
so-called Hamiltonian symmetries [5]. In the case of canonical Hamiltonian equations these
are the evolutionary (ξ = 0) symmetries (1.6):

X̄ = ηi(t, q, p)
∂

∂qi
+ ζi(t, q, p)

∂

∂pi

(1.7)

with

ηi = ∂I

∂pi

, ζ i = − ∂I

∂qi
, i = 1, . . . , n, (1.8)

for some function I (t, q, p), namely, symmetries of the form

X̄I = ∂I

∂pi

∂

∂qi
− ∂I

∂qi

∂

∂pi

. (1.9)

These symmetries are restricted to the phase space (q, p) and are generated by the function
I = I (t, q, p). For symmetry (1.9) the independent variable t is invariant and plays a role of
a parameter.

Noether’s theorem (theorem 6.33 in [5]) relates the Hamiltonian symmetries of the
Hamiltonian equations with their first integrals. This approach has some disadvantages.
First, some transformations lose their geometrical sense if considered in the evolutionary form
(1.9). Second, there is a necessity of integration to find first integrals with the help of (1.8).
Third, a specific disadvantage is a big difficulty to preserve evolutionary symmetries (1.7)
in discrete models [7]. In this approach, it is also not clear why some point symmetries of
Hamiltonian equations yield integrals, while others do not.

In the present paper, we will consider symmetries of the general form (1.6), which are not
restricted to the phase space and can also transform t. In contrast to the Hamiltonian symmetries
in the form (1.9) the underlying symmetries have a clear geometric sense in finite space and
do not require integration to find first integrals. We will provide a Hamiltonian version
of Noether’s theorem (in the strong formulation) based on a newly established Hamiltonian
identity, which is an analog of the well-known Noether’s identity in the Lagrangian framework.
The Hamiltonian identity links directly an invariant Hamiltonian function with first integrals
of the canonical Hamiltonian equations. This approach provides a simple and clear way to
construct first integrals by means of merely algebraic manipulations with symmetries of the
action functional. The approach will be illustrated on a number of examples.

2



J. Phys. A: Math. Theor. 42 (2009) 454007 V Dorodnitsyn and R Kozlov

The paper is organized as follows. In section 2, we introduce the definition of an invariant
Hamiltonian and establish the necessary and sufficient condition for H to be invariant. The main
proposition of this section is lemma 2.3 which introduces a new identity, used in theorem 2.4 to
formulate the necessary and sufficient condition for existence of first integrals of Hamiltonian
equations (Hamiltonian version of Noether’s theorem in the strong formulation). Lemma 2.7
introduces two more identities, which are used in theorem 2.9 to formulate necessary and
sufficient conditions for the canonical Hamiltonian equations to be invariant. This section
also contains examples of canonical Hamiltonian equations with first integrals. Section 3 is
devoted to difference Hamiltonian equations. Their symmetries and first integrals are shown
to be related in the same way as those of the continuous canonical Hamiltonian equations.
Final section 4 contains concluding remarks.

2. Invariance of Hamiltonian action and first integrals

As an analog of the Lagrangian elementary action [5, 6] we consider the Hamiltonian
elementary action

pi dqi − H dt, (2.1)

which can be invariant with respect to a group generated by an operator of the form (1.6).

Definition 2.1. We call a Hamiltonian function invariant with respect to a symmetry operator
(1.6) if the elementary action (2.1) is an invariant of the group generated by this operator.

Theorem 2.2. A Hamiltonian is invariant with respect to a group generated by the operator
(1.6) if and only if the following condition holds:

ζi q̇
i + piD(ηi) − X(H) − HD(ξ) = 0. (2.2)

Proof. The invariance condition follows directly from the action of the operator X prolonged
on the differentials dt and dqi , i = 1, . . . , n:

X = ξ(t, q, p)
∂

∂t
+ ηi(t, q, p)

∂

∂qi
+ ζi(t, q, p)

∂

∂pi

+ D(ξ) dt
∂

∂(dt)
+ D(ηi) dt

∂

∂ (dqi)
.

(2.3)

Application of (2.3) to the Hamiltonian elementary action (2.1) yields

X(pidqi − H dt) = (ζi q̇
i + piD(ηi) − X(H) − HD(ξ)) dt = 0. �

Now we can relate the conservation properties of the canonical Hamiltonian equations to
the invariance of the Hamiltonian function. Generally, Hamiltonization of Lagrangian systems
can lead to Hamiltonian equations with constraints. The Hamiltonian form of the Noether
identity for such systems can be found in [8, 9]. In the present paper, we restrict ourselves to
Hamiltonian systems without constraints.

Lemma 2.3. The identity

ζi q̇
i + piD(ηi) − X(H) − HD(ξ) ≡ ξ

(
D(H) − ∂H

∂t

)

− ηi

(
ṗi +

∂H

∂qi

)
+ ζi

(
q̇i − ∂H

∂pi

)
+ D[piη

i − ξH ] (2.4)

is true for any smooth function H = H(t, q, p).

3
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Proof. The identity can be established by direct calculation. �

We call this identity the Hamiltonian identity. This identity makes it possible to develop
the following result.

Theorem 2.4. The canonical Hamiltonian equations (1.1) possess a first integral of the form

I = piη
i − ξH (2.5)

if and only if the Hamiltonian function is invariant with respect to the operator (1.6) on the
solutions of equations (1.1).

Proof. The result follows from identity (2.4). Note that we use the following: the operator
of total differentiation (1.4) applied to Hamiltonian H and considered on the solutions of
Hamiltonian equations (1.1) coincides with partial differentiation with respect to time:

D(H)|q̇=Hp, ṗ=−Hq
=

[
∂H

∂t
+ q̇i ∂H

∂qi
+ ṗi

∂H

∂pi

]
q̇=Hp, ṗ=−Hq

= ∂H

∂t
.

�

Theorem 2.4 corresponds to the strong version [6] (i.e. necessary and sufficient condition)
of the Noether theorem [10] for invariant Lagrangians and Euler–Lagrange equations.

Remark 2.5. Theorem 2.4 can be generalized to the case of the divergence invariance of the
Hamiltonian action (see [11] for this result in the Lagrangian framework)

ζi q̇
i + piD(ηi) − X(H) − HD(ξ) = D(V ), (2.6)

where V = V (t, q, p). If this condition holds on the solutions of the canonical Hamiltonian
equations (1.1), then there is a first integral

I = piη
i − ξH − V. (2.7)

Remark 2.6. Let us note that according to definition 2.1 any Hamiltonian is invariant with
respect to the family of operators

X∗ = ζi(t, q, p)
∂

∂pi

(2.8)

on the solutions of the corresponding Hamiltonian equations. These operators do not provide
non-trivial first integrals (they give I = 0). Therefore, it makes sense to consider symmetry
operators up to the set of operators (2.8). It should be mentioned that in general operators X∗
are not symmetries of the Hamiltonian equations (1.1).

In the Lagrangian framework, the variational principle provides us with the Euler–
Lagrange equations. It is known that the invariance of the Euler–Lagrange equations follows
from the invariance of the action integral. The following lemma 2.7 and theorem 2.8 establish
the sufficient conditions for canonical Hamiltonian equations to be invariant.

Lemma 2.7. The following identities are true for any smooth function H = H(t, q, p):

δ

δpj

(ζi q̇
i + piD(ηi) − X(H) − HD(ξ)) ≡ D(ηj ) − q̇jD(ξ) − X

(
∂H

∂pj

)

+
∂ξ

∂pj

(
D(H) − ∂H

∂t

)
− ∂ηi

∂pj

(
ṗi +

∂H

∂qi

)

+

(
∂ζi

∂pj

+ δijD(ξ)

)(
q̇i − ∂H

∂pi

)
, j = 1, . . . , n, (2.9)

4
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δ

δqj
(ζi q̇

i + piD(ηi) − X(H) − HD(ξ)) ≡ −D(ζj ) + ṗjD(ξ) − X

(
∂H

∂qj

)

+
∂ξ

∂qj

(
D(H) − ∂H

∂t

)
−

(
∂ηi

∂qj
+ δijD(ξ)

)

×
(

ṗi +
∂H

∂qi

)
+

∂ζi

∂qj

(
q̇i − ∂H

∂pi

)
, j = 1, . . . , n, (2.10)

where δij is the Kronecker symbol.

Proof. The identities can be easily obtained by direct computation. �

Theorem 2.8. If a Hamiltonian is invariant or divergence invariant with respect to the
symmetry (1.6), then the canonical Hamiltonian equations (1.1) are also invariant.

Proof. For invariance of the canonical Hamiltonian equations (1.1) we need the equations

D(ηj ) − q̇jD(ξ) = X

(
∂H

∂pj

)
, D(ζj ) − ṗjD(ξ) = −X

(
∂H

∂qj

)
, j = 1, . . . , n

to hold on the solutions of the Hamiltonian equations [5]. These conditions follow from the
identities (2.9) and (2.10). In the case of divergence invariance the term D(V ) disappears
because it belongs to the kernel of the variational operators (1.3). �

The invariance of the Hamiltonian is a sufficient condition for the canonical Hamiltonian
equations to be invariant. The symmetry group of the canonical Hamiltonian equations can
of course be larger than that of the Hamiltonian. The following theorem 2.9 establishes the
necessary and sufficient conditions for canonical Hamiltonian equations to be invariant.

Theorem 2.9. Canonical Hamiltonian equations (1.1) are invariant with respect to the
symmetry (1.6) if and only if the following conditions are true (on the solutions of the canonical
Hamiltonian equations):

δ

δpj

(ζi q̇
i + piD(ηi) − X(H) − HD(ξ))

∣∣∣∣
q̇=Hp, ṗ=−Hq

= 0, j = 1, . . . , n, (2.11)

δ

δqj
(ζi q̇

i + piD(ηi) − X(H) − HD(ξ))

∣∣∣∣
q̇=Hp, ṗ=−Hq

= 0, j = 1, . . . , n. (2.12)

Proof. The statement follows from identities (2.9) and (2.10). �

It should be noted that conditions (2.11) and (2.12) are true for all symmetries of canonical
Hamiltonian equations. But not all of those symmetries yield the ‘variational integral’ of these
conditions, i.e.

(ζi q̇
i + piD(ηi) − X(H) − HD(ξ))|q̇=Hp, ṗ=−Hq = 0, (2.13)

which gives first integrals in accordance with theorem 2.4. That is why not all symmetries of
the canonical Hamiltonian equations provide first integrals. Below we illustrate the theorems,
given above, by examples.

2.1. Applications

In this point we present two examples of canonical Hamiltonian equations with first integrals.

5
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2.1.1. Repulsive one-dimensional motion. Let us consider one-dimensional motion in the
Coulomb field (the case of a repulsive force):

q̇ = p, ṗ = 1

q2
. (2.14)

These equations are generated by the Hamiltonian function

H(t, q, p) = p2

2
+

1

q
.

Equations (2.14) admit Lie algebra with basis operators

X1 = ∂

∂t
, X2 = 3t

∂

∂t
+ 2q

∂

∂q
− p

∂

∂p
. (2.15)

The invariance of Hamiltonian condition (2.2) is satisfied for the operator X1 only. Applying
theorem 2.4, we calculate the corresponding first integral

I1 = −H = −
(

p2

2
+

1

q

)
. (2.16)

Application of operator X2 to the Hamiltonian action gives

ζ q̇ + pD(η) − X(H) − HD(ξ) = pq̇ −
(

p2

2
+

1

q

)
�= 0.

Meanwhile, in accordance with theorem 2.9 we have

δ

δp
(ζ q̇ + pD(η) − X(H) − HD(ξ))

∣∣∣∣
q̇=p, ṗ= 1

q2

= (q̇ − p)|q̇=p, ṗ= 1
q2

= 0,

δ

δq
(ζ q̇ + pD(η) − X(H) − HD(ξ))

∣∣∣∣
q̇=p, ṗ= 1

q2

=
(

−ṗ +
1

q2

)∣∣∣∣
q̇=p, ṗ= 1

q2

= 0.

Thus, the operator X2 is a symmetry of the Hamiltonian equations (2.14), which does not
produce a first integral.

2.1.2. Nonlinear motion. As the next example we consider the equations

q̇ = p, ṗ = 1

q3
, (2.17)

corresponding to the Hamiltonian

H(t, q, p) = 1

2

(
p2 +

1

q2

)
.

These equations admit symmetries

X1 = ∂

∂t
, X2 = 2t

∂

∂t
+ q

∂

∂q
− p

∂

∂p
, X3 = t2 ∂

∂t
+ tq

∂

∂q
+ (q − tp)

∂

∂p
. (2.18)

We check invariance of H in accordance with theorem 2.2 and find that condition (2.2) is
satisfied for the operators X1 and X2. Using theorem 2.4, we calculate the corresponding first
integrals

I1 = −H = −1

2

(
p2 +

1

q2

)
, I2 = pq − t

(
p2 +

1

q2

)
. (2.19)

6
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For the third symmetry operator the Hamiltonian is divergence invariant with V3 = q2/2. In
accordance with remark 2.5, it yields the conserved quantity

I3 = −1

2

(
t2

q2
+ (q − tp)2

)
. (2.20)

The first integrals (2.19), (2.20) are not independent. They are connected by the relation

4I1I3 − I 2
2 = 1. (2.21)

Putting I1 = A/2 and I2 = B, we find the solution of (2.17) as

Aq2 + (At − B)2 + 1 = 0, p = B − At

q
. (2.22)

Note that no integration is needed to provide solutions of (2.17).
In [12] the Hamiltonian form of Noether’s theorem, presented in this section, was applied

to find first integrals of Kepler motion.

3. First integrals of difference Hamiltonian equations

The preservation of first integrals (conservation laws) in numerical work is of great importance
(see, for example, [13, 14]). Therefore, it makes sense to establish a discrete analog of the
results presented in the preceding section for the continuous Hamiltonian equations.

3.1. The discrete version of Hamiltonian action

We will consider finite-difference equations and discrete Hamiltonians at some point (t, q, p)

of a lattice. Generally, the lattice is not regular. The notations are clear from the following
picture.

q,p

t

(t−, q−, p−)
(t, q, p)

(t+, q+, p+)

h− h+

To consider difference equations we will need three points of a lattice. Prolongation of
the Lie group operator (1.6) for neighboring points (t−, q−, p−) and (t+, q+, p+) is as follows
[7]:

X = ξ
∂

∂t
+ ηi ∂

∂qi
+ ζi

∂

∂pi

+ ξ−
∂

∂t−
+ ηi

−
∂

∂qi−
+ ζ−

i

∂

∂p−
i

+ ξ+
∂

∂t+
+ ηi

+
∂

∂qi
+

+ ζ +
i

∂

∂p+
i

+ (ξ+ − ξ)
∂

∂h+
+ (ξ − ξ−)

∂

∂h−
, (3.1)

where

ξ− = ξ(t−, q−, p−), ηi
− = ηi(t−, q−, p−), ζ−

i = ζ i(t−, q−, p−),

ξ+ = ξ(t+, q+, p+), ηi
+ = ηi(t+, q+, p+), ζ +

i = ζ i(t+, q+, p+).

Hamiltonian equations can be obtained by the variational principle from the finite-
difference functional

Hh =
∑
�

(
p+

i

(
qi

+ − qi
) − H(t, t+, q, p+)h+

)
. (3.2)

7
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Indeed, a variation of this functional along a curve qi = φi(t), pi = ψi(t), i = 1, . . . , n, at
some point (t, q, p) will affect only two terms of the sum (3.2):

Hh = · · · + pi

(
qi − qi

−
) − H(t−, t, q−, p)h− + p+

i

(
qi

+ − qi
) − H(t, t+, q, p+)h+ + · · · .

(3.3)

Therefore, we get the following expression for the variation:

δHh = δH
δpi

δpi +
δH
δqi

δqi +
δH
δt

δt, (3.4)

where δqi = φ′
iδt , δpi = ψ ′

i δt , i = 1, . . . , n, and

δH
δpi

= qi − qi
− − h−

∂H
∂pi

−
,

δH
δqi

= −
(

p+
i − pi + h+

∂H
∂qi

)
, i = 1, . . . , n,

δH
δt

= −
(

h+
∂H
∂t

− H + h−
∂H
∂t

−
+ H−

)
,

(3.5)

where H = H(t, t+, q, p+) and H− = H(t−, t, q−, p).
For the stationary value of the finite-difference functional (3.2) we obtain the system of

2n + 1 equations

δH
δpi

= 0,
δH
δqi

= 0, i = 1, . . . , n,
δH
δt

= 0. (3.6)

Thus, we arrive at the system of 2n + 1 equations

D
h
(qi) = ∂H

∂p+
i

, D
h
(pi) = − ∂H

∂qi
, i = 1, . . . , n,

h+
∂H
∂t

− H + h−
∂H
∂t

−
+ H− = 0,

(3.7)

which we will call difference Hamiltonian equations. For convenience we use the following
total right-shift operator and the corresponding discrete differentiation operator:

S
h
f (t) = f (t+), D

h
=

S
h

− 1

h+
.

Let us note that the first 2n equations (3.7) are first-order difference equations, which
correspond to the canonical Hamiltonian equations (1.1) in the continuous limit. The last
equation is of second order. Its continuous counterpart is automatically satisfied on the
solutions of canonical Hamiltonian equations. In the discrete case it defines the lattice on
which the canonical Hamiltonian equations are discretized. Being a second-order difference
equation it needs one more initial value (first step of lattice) to state the initial-value problem.

Let us note that equations (3.7) can be obtained from discrete variational equations in the
Lagrangian framework [7, 15–17] with the help of discrete Legendre transform [18].

Remark 3.1. Equivalent formulation can be considered for the finite-difference functional

Hh =
∑
�

(
pi

(
qi

+ − qi
) − H(t, t+, q+, p)h+

)
(3.8)

and a discrete Hamiltonian function H(t, t+, q+, p).

8
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3.2. Symplecticity of difference Hamiltonian equations

The canonical Hamiltonian equations generate symplectic transformations in the phase space
(q, p). For the solution (q(t), p(t)) of the system (1.1) with initial data q(t0) = q0, p(t0) = p0

this property can be expressed as a conservation of the two-form

dpi ∧ dqi = dp0
i ∧ dqi

0. (3.9)

This property is used to select symplectic numerical integrators [19, 20] as numerical schemes
with the property

dpn+1
i ∧ dqi

n+1 = dpn
i ∧ dqi

n, n = 0, 1, . . . . (3.10)

Definition (3.10) for conservation of symplecticity cannot be used for discretizations on
solution-dependent meshes such as difference Hamiltonian equations (3.7). Generally,
variations of the dependent variables involve variations of the lattice points. It is clearly
seen from the variational equations for the system (3.7):

dqi
+ − dqi = ∂2(Hh+)

∂p+
i ∂t

dt +
∂2(Hh+)

∂p+
i ∂t+

dt+ +
∂2(Hh+)

∂p+
i ∂qj

dqj +
∂2(Hh+)

∂p+
i ∂p+

j

dp+
j , i = 1, . . . , n,

dp+
i − dpi = −∂2(Hh+)

∂qi∂t
dt − ∂2(Hh+)

∂qi∂t+
dt+ − ∂2(Hh+)

∂qi∂qj
dqj − ∂2(Hh+)

∂qi∂p+
j

dp+
j , i = 1, . . . , n,

∂2(Hh+)

∂t2
dt +

∂2(Hh+)

∂t∂t+
dt+ +

∂2(Hh+)

∂t∂qj
dqj +

∂2(Hh+)

∂t∂p+
j

dp+
j

+
∂2(H−h−)

∂t∂t−
dt− +

∂2(H−h−)

∂t2
dt +

∂2(H−h−)

∂t∂q
j
−

dq
j
− +

∂2(H−h−)

∂t∂pj

dpj = 0.

For dt+, dq+, dp+, i.e. the variations in the next point of the lattice, these equations are a
system of 2n + 1 linear algebraic equations. Thus, the variational equations considered in the
phase space (without variations of the independent variable) form an overdetermined system
of 2n + 1 equations for 2n variables, which in the general case has only trivial solutions.

Therefore, we are forced to look for symplecticity in the extended phase space (t, q, p)

(see also general considerations for the continuous case in [21]).

Theorem 3.2. The difference Hamiltonian equations (3.7) possess the conservation of
symplecticity

dp+
i ∧ dqi

+ − dE+ ∧ dt+ = dpi ∧ dqi − dE ∧ dt, (3.11)

where

E+ = H + h+
∂H
∂t+

, E = H− + h−
∂H
∂t

−
(3.12)

are discrete energies for lattice points t+ and t.

Proof. From the first 2n variational equations we obtain

dp+
i ∧ dqi

+ − dpi ∧ dqi = ∂2(Hh+)

∂p+
i ∂t

dp+
i ∧ dt +

∂2(Hh+)

∂p+
i ∂t+

dp+
i ∧ dt+

+
∂2(Hh+)

∂qi∂t
dqi ∧ dt +

∂2(Hh+)

∂qi∂t+
dqi ∧ dt+. (3.13)

With the help of the relations for variations

dE+ = ∂2(Hh+)

∂t∂t+
dt +

∂2(Hh+)

∂t2
+

dt+ +
∂2(Hh+)

∂qj ∂t+
dqj +

∂2(Hh+)

∂p+
j ∂t+

dp+
j

9
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and

dE = ∂2(H−h−)

∂t−∂t
dt− +

∂2(H−h−)

∂t2
dt +

∂2(H−h−)

∂q
j
−∂t

dq
j
− +

∂2(H−h−)

∂pj∂t
dpj

= −∂2(Hh+)

∂t2
dt − ∂2(Hh+)

∂t+∂t
dt+ − ∂2(Hh+)

∂qj ∂t
dqj − ∂2(Hh+)

∂p+
j ∂t

dp+
j ,

where the last variational equation was used, we get

dE+ ∧ dt+ − dE ∧ dt = ∂2(Hh+)

∂p+
i ∂t

dp+
i ∧ dt +

∂2(Hh+)

∂p+
i ∂t+

dp+
i ∧ dt+

+
∂2(Hh+)

∂qi∂t
dqi ∧ dt +

∂2(Hh+)

∂qi∂t+
dqi ∧ dt+. (3.14)

Comparing right-hand sides of (3.13) and (3.14), we conclude the statement of the theorem.
�

3.3. Invariance of the Hamiltonian action

Let us consider the functional (3.2) on some lattice, given by the equation

�(t, h+, h−, q, p, q−, p−, q+, p+) = 0. (3.15)

Definition 3.3. We call a discrete Hamiltonian function H considered on the lattice (3.15)
invariant with respect to a group generated by the operator (3.1), if the action (3.2) considered
on the mesh (3.15) is an invariant manifold of the group.

Theorem 3.4. A Hamiltonian function considered together with the mesh (3.15) is invariant
with respect to a group generated by the operator (3.1) if and only if the following conditions
hold:

ζ +
i D

h
(qi) + p+

i D
h
(ηi) − X(H) − HD

h
(ξ)

∣∣∣∣
�=0

= 0, X�|�=0 = 0. (3.16)

Proof. The invariance condition follows directly from the action of X on the functional:

X

( ∑
�

p+
i

(
qi

+ − qi
) − Hh+

)
=

∑
�

(
ζ +
i D

h
(qi) + p+

i D
h
(ηi) − X(H) − HD

h
(ξ)

)
h+ = 0.

It should be provided with the invariance of the mesh, which is obtained by the action of the
symmetry operator on the mesh equation (3.15). �

3.4. Discrete Hamiltonian identity and Noether-type theorem

As in the continuous case, the invariance of a discrete Hamiltonian on a specified mesh yields
first integrals of the corresponding difference Hamiltonian equations.

Lemma 3.5. The following identity is true for any smooth function H = H(t, t+, q, p+):

ζ +
i D

h
(qi) + p+

i D
h
(ηi) − X(H) − HD

h
(ξ) ≡ ξ

(
D
h
(H−) − ∂H

∂t
− h−

h+

∂H
∂t

−)

− ηi

(
D
h
(pi) +

∂H
∂qi

)
+ ζ +

i

(
D
h
(qi) − ∂H

∂p+
i

)
+ D

h

[
ηipi − ξ

(
H− + h−

∂H
∂t

−)]
.

(3.17)

10
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Proof. The identity can be established by direct calculation. �

We call this identity the discrete Hamiltonian identity. It allows us to state the following
result.

Theorem 3.6. The difference Hamiltonian equations (3.7), invariant with respect to symmetry
operator (3.1), possess a first integral

I = ηipi − ξ

(
H− + h−

∂H
∂t

−)
(3.18)

if and only if the Hamiltonian function is invariant with respect to the same symmetry on the
solutions of equations (3.7).

Proof. This result is a consequence of identity (3.17). The invariance of the difference
Hamiltonian equations is needed to guarantee the invariance of the mesh, which is defined by
these equations. �

Remark 3.7. Theorem 3.6 can be generalized to the case of the divergence invariance of the
Hamiltonian action, i.e.

ζ +
i D

h
(qi) + p+

i D
h
(ηi) − X(H) − HD

h
(ξ) = D

h
(V ), (3.19)

where V = V (t, q, p). If this condition holds on the solutions of the difference Hamiltonian
equations (3.7), then there is a first integral

I = ηipi − ξ

(
H− + h−

∂H
∂t

−)
− V. (3.20)

Remark 3.8. For difference Hamiltonian equations with Hamiltonian functions invariant with
respect to time translations, i.e. H = H(h+, q, p+), where h+ = t+ − t , there is a conservation
of energy:

E = H− + h−
∂H−

∂h−
= H + h+

∂H
∂h+

.

In this case the difference Hamiltonian equations (3.7) are related to symplectic-momentum-
energy preserving variational integrations introduced for the discrete Lagrangian framework
in [22]. Note that in contrast to the continuous case, where Hamiltonian H(t, q, p) represents
the energy of the system, the discrete Hamiltonian H is different from the discrete energy; it
has a meaning of a generating function for discrete Hamiltonian flow.

3.5. Applications

3.5.1. Discrete harmonic oscillator. The harmonic oscillator model is very important in
physics. A mass at equilibrium under the influence of any conservative force behaves as a
simple harmonic oscillator (in the limit of small motions). Harmonic oscillators are exploited
in many man-made devices, such as clocks and radio circuits.

Let us consider the one-dimensional harmonic oscillator

q̇ = p, ṗ = −q. (3.21)

This system of Hamiltonian equations is generated by the Hamiltonian function

H(t, q, p) = 1
2 (q2 + p2).

11
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As a discretization of equations (3.21) we consider the application of the midpoint rule

q+ − q

h+
= �

p + p+

2
,

p+ − p

h+
= −�

q + q+

2
(3.22)

on a uniform mesh h+ = h− = h. The parameter � will be chosen later. The presented
discretization can be rewritten as the following system of equations:

D
h
(q) = 4�

4 − �2h2
+

(
p+ +

�h+

2
q

)
, D

h
(p) = − 4�

4 − �2h2
+

(
q +

�h+

2
p+

)
.

h+ = h−.

(3.23)

It can be shown that this system is generated by the discrete Hamiltonian function

H(t, t+, q, p+) = 2�

4 − �2h2
+

(
q2 + p2

+ + �h+qp+
)
.

Indeed, the first and second equations of (3.7) are exactly the same as those of (3.23). The last
equation of (3.7) takes the form

−2�
(
4 + �2h2

+

)
(
4 − �2h2

+

)2

(
q2 + p2

+

) − 16�2h+(
4 − �2h2

+

)2 qp+ +
2�

(
4 + �2h2

−
)

(
4 − �2h2−

)2

(
q2

− + p2
)

+
16�2h−(

4 − �2h2−
)2 q−p = 0.

Using the first and second equations, we can rewrite it as(
− 2�

4 + �2h2
+

+
2�

4 + �2h2−

)
(q2 + p2) = 0.

Therefore, for the case q2 + p2 �= 0 this equation can be taken in an equivalent form

h+ = h− = h.

The system of difference equations (3.23) on a uniform mesh admits, in particular, the
following symmetries:

X1 = sin(ωt)
∂

∂q
+ cos(ωt)

∂

∂p
, X2 = cos(ωt)

∂

∂q
− sin(ωt)

∂

∂p
,

X3 = ∂

∂t
, X4 = q

∂

∂q
+ p

∂

∂p
, X5 = p

∂

∂q
− q

∂

∂p
,

(3.24)

where

ω = arctan(�h/2)

h/2
.

For the symmetry operators X1 and X2 we have the divergence invariance conditions

ζ+ D
h
(q) + p+ D

h
(η) − X(H) − HD

h
(ξ) = D

h
(V )

fulfilled on the solutions of equations (3.23) with functions V1 = q cos(ωt) and V2 =
−q sin(ωt), respectively. Therefore, we obtain two corresponding first integrals

I1 = p sin(ωt) − q cos(ωt), I2 = p cos(ωt) + q sin(ωt). (3.25)

The symmetry operator X3 satisfies the invariance condition

ζ+ D
h
(q) + p+ D

h
(η) − X(H) − HD

h
(ξ) = 0.

12
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Thus, we get the first integral

I3 = − 4�

4 − �2h2−

(
4 + �2h2

−
4 − �2h2−

q2
− + p2

2
+

4�h−
4 − �2h2−

q−p

)
. (3.26)

Using the first and second equations of (3.23), we can simplify it as

I3 = − 4�

4 + �2h2−

q2 + p2

2
.

Since from the first integrals I1 and I2 we have the conservation law

I2
1 + I2

2 = q2 + p2 = const,

it follows that we can take the third first integral equivalently as

Ĩ3 = h−. (3.27)

The three first integrals I1, I2, Ĩ3 are sufficient for integration of the system (3.22). We
obtain the solution

q = I2 sin(ωt) − I1 cos(ωt), p = I1 sin(ωt) + I2 cos(ωt) (3.28)

on the lattice

ti = t0 + ih, i = 0,±1,±2, . . . , h = Ĩ3. (3.29)

Let us consider different choices for the parameter �:

(i) � = 1 or no additional parameter.
This is the natural choice for the discretization of equations (3.21). In this case the
symmetry operators X1 and X2 contain the parameter

ω = arctan(h/2)

h/2
,

which represents the deformation of the corresponding symmetry operators admitted by
the underlying differential equations (3.21). The discrete harmonic oscillator follows the
same trajectory as the continuous harmonic oscillator, but with a different velocity.

(ii) Modified discrete harmonic oscillator (exact scheme).
The numerical error of the preceding point can be eliminated by time reparametrization.
If we chose the parameter

� = tan(h/2)

h/2
,

we get ω = 1. In this case the symmetry operators (3.24) are the same as the corresponding
symmetries of the underlying differential equations. We obtain the exact discretization
of the harmonic oscillator, i.e. a discretization which gives the exact solution of the
underlying ODEs.

The exact schemes for two- and four-dimensional harmonic oscillators were used in [23]
to construct exact schemes for two- and three-dimensional Kepler motion, respectively.

13
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3.5.2. Nonlinear motion. Let us consider a discrete model for equations (2.17). We chose a
discretization

q+ − q

h+
= qp + q+p+

q + q+
,

p+ − p

h+
= 1

q2q2
+

q + q+

2
, (3.30)

which is invariant with respect to Lie group operators (2.18). The discretization will be
considered on the invariant lattice

h+

qq+
= h−

qq−
. (3.31)

This discrete system can be found with the help of the method of finite-difference invariants
[24].

Difference equations (3.30) can be rewritten as
q+ − q

h+
= p+ − h+

2qq̃2
,

p+ − p

h+
= 1

q2q̃2

q + q̃

2
, (3.32)

where q̃ = q̃(h+, q, p+) is the solution of the cubic equation

q̃3 − (q + h+p+)q̃
2 +

h2
+

2q
= 0 (3.33)

expressed in terms of the equation parameters h+, q and p+ (the expression for q̃ can be written
down explicitly; we do not provide it here because of the size of the expression). These
equations are generated by the Hamiltonian function

H(t, t+, q, p+) = 1

2

((
p+ − h+

2qq̃2

)2

+
2q̃ − q

qq̃2

)
, q̃ = q̃(h+, q, p+).

The last difference Hamiltonian equation of (3.7) takes the form

−1

2

((
p+ − h+

2qq̃2

)2

+
1

qq̃

)
+

1

2

((
p − h−

2q̃2−q−

)2

+
1

q̃−q−

)
= 0, (3.34)

where q̃− = q̃(h−, q−, p) solves the equation

q̃3
− − (q− + h−p)q̃2

− +
h2

−
2q−

= 0, (3.35)

which is equation (3.33) shifted to the left. It can be shown that lattice equation (3.34),
generated by the Hamiltonian, is equivalent to lattice equation (3.31) on the solutions of
(3.32).

The Hamiltonian function is invariant with respect to the symmetry operators X1 and X2.
For the symmetry X3 we have divergence invariance with V3 = q2/2. Thus, these symmetries
yield three first integrals

I1 = −1

2

((
p − h−

2q2q−

)2

+
1

qq−

)
,

I2 = qp − t

((
p − h−

2q2q−

)2

+
1

qq−

)
,

I3 = tqp − t2

2

((
p − h−

2q2q−

)2

+
1

qq−

)
− q2

2
.

(3.36)

Note that on the solutions of (3.30) we have the relation

4I1I3 − I2
2 = 1 − 1

4

(
h−
qq−

)2

, (3.37)
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which explains the choice of the lattice (3.31). In contrast to the differential case (see relation
(2.21)) the first integrals I1, I2 and I3 are independent.

In order to integrate the discrete system (3.30), (3.31) we use all three first integrals.
Setting I1 = A/2, I2 = B and

h−
q−q

= ε,

we obtain the solution

Aq2 + (At − B)2 + 1 = ε2

4
, p = B − At

q
. (3.38)

The solution agrees with the solution of the underlying differential equation, given by (2.22),
up to the order ε2. Complete integration of the difference equations (3.30), (3.31) requires
integration of the lattice equation. It can be found in [17].

3.5.3. Nonlinear ODEs. The equations

q̇ = 4

p2
, ṗ = 1 (3.39)

are generated by the Hamiltonian

H = − 4

p
− q.

We consider the discretization
q+ − q

h+
= 4

(p+ − h+/2)(p + h+/2)
,

p+ − p

h+
= 1 (3.40)

on the lattice
h+

p+ − h+/2
= h−

p − h−/2
. (3.41)

This scheme is invariant with respect to Lie group operators

X1 = ∂

∂t
, X2 = ∂

∂q
, X3 = t

∂

∂t
− q

∂

∂q
+ p

∂

∂p
. (3.42)

The difference equations (3.40) can be rewritten as
q+ − q

h+
= 4

(p+ − h+/2)2
,

p+ − p

h+
= 1. (3.43)

These equations are generated by the discrete Hamiltonian function

H(t, t+, q, p+) = − 4

p+ − h+/2
− q.

The last discrete Hamiltonian equation (3.7) is

− 4p+

(p+ − h+/2)2
+ q − 4p

(p − h−/2)2
− q− = 0. (3.44)

On the solutions of (3.40) this equation leads to the lattice equation (3.41).
The Hamiltonian function is invariant with respect to the symmetry operators X1 and X3.

For the symmetry X2 we have divergence invariance with V2 = t . Therefore, these symmetries
provide us with three first integrals

I1 = 4p+

(p − h−/2)2
+ q−, I2 = p − t, I3 = −qp + t

(
4p

(p − h−/2)2
+ q−

)
.

(3.45)
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The first integrals satisfy the relation

4 − I1I2 − I3 =
(

h−
p − h−/2

)2

(3.46)

on the solutions of the difference equations (3.40) that justifies the lattice (3.41). Setting

I1 = A, I2 = B,
h−

p − h−/2
= ε,

we find the solution of the discrete model as

q = A − 4

t + B

(
1 − ε2

4

)
, p = t + B. (3.47)

Integration of the lattice equation can be found in [17].

4. Conclusion

The goal of this paper is to present a method to find first integrals of canonical Hamiltonian
equations and difference Hamiltonian equations as well as to establish a way to preserve the
Hamiltonian structure in finite-difference schemes. We introduce invariance of a Hamiltonian
action functional and its relation to first integrals of canonical Hamiltonian equations. The
conservation properties of the canonical Hamiltonian equations are based on the newly written
identity, called the Hamiltonian identity. This identity can be viewed as a ‘translation’ of the
well-known Noether identity into the Hamiltonian framework. The identity makes it possible
to establish a one-to-one correspondence between invariance of the Hamiltonian and first
integrals of the canonical Hamiltonian equations (the strong version of Noether’s theorem).
The Hamiltonian version of Noether’s theorem, formulated in this paper, gives a constructive
way to find first integrals of the canonical Hamiltonian equations once their symmetries are
known. This simple method does not require integration as it was illustrated by examples.
The presented approach gives a possibility of considering canonical Hamiltonian equations
and find their first integrals without exploiting the relationship to the Lagrangian formulation
(see, for example, [25]).

The variational consequences of the Hamiltonian identity make it possible to establish the
necessary and sufficient conditions for invariance of canonical Hamiltonian equations. These
conditions make it clear why not each symmetry of the Hamiltonian equations provides a first
integral.

The approach developed for the continuous case was applied to difference Hamiltonian
equations, which can be obtained by a variational principle from finite-difference functionals.
Similar to the continuous case we related invariance of discrete Hamiltonian functions to first
integrals of the difference Hamiltonian equations. In particular, energy conserving numerical
schemes can be obtained as difference Hamiltonian equations generated by Hamiltonian
functions invariant with respect to time translation. The results presented in this paper
provide guidelines how to construct conservative finite-difference schemes in the Hamiltonian
framework that are important in numerical implementation.

Acknowledgments

The VD’s research was sponsored in part by the Russian Fund for Basic Research under the
research project no 09-01-00610a. The research of RK was partly supported by the Norwegian
Research Council under SpaceAce contract no 176891/V30.

16



J. Phys. A: Math. Theor. 42 (2009) 454007 V Dorodnitsyn and R Kozlov

References

[1] Gelfand I M and Fomin S V 1963 Calculus of Variations (Englewood Cliffs, NJ: Prentice-Hall)
[2] Marsden J E and Ratiu T S 1999 Introduction to Mechanics and Symmetry: A Basic Exposition of Classical

Mechanical Systems (New York: Springer)
[3] Arnold V I 1989 Mathematical Methods of Classical Mechanics (New York: Springer)
[4] Ovsiannikov L V 1982 Group Analysis of Differential Equations (New York: Academic)
[5] Olver P J 1993 Applications of Lie groups to Differential Equations (New York: Springer)
[6] Ibragimov N H 1985 Transformation Groups Applied to Mathematical Physics (Dordrecht: Reidel)
[7] Dorodnitsyn V 2001 The Group Properties of Difference Equations (Moscow: Fizmatlit) (in Russian)
[8] Ping Li Zi and Xin Li 1991 Generalized Noether theorems and applications Int. J. Theor. Phys. 30 225–33
[9] Deriglazov A A and Evdokimov K E 2000 Local symmetries and the Noether identities in the Hamiltonian

framework Int. J. Mod. Phys. A 15 4045–67
[10] Noether E 1918 Invariante Variationsprobleme Nachr. Konig. Gesell. Wissen., Gottingen, Math.-Phys. Kl, Heft

2 235–57 (in German)
[11] Bessel-Hagen E 1921 Uber die Erhaltungssätze der Elektrodynamik Math. Ann. 84 258–76 (in German)
[12] Dorodnitsyn V and Kozlov R 2009 Invariance and first integrals of canonical Hamilton equations arXiv

no:0809.1361 [math-ph]
[13] Samarskii A A 2001 The Theory of Difference Schemes (New York: Dekker)
[14] Hairer E, Lubich C and Wanner G 2006 Geometric Numerical Integration. Structure-Preserving Algorithms for

Qrdinary Differential Equations (Berlin: Springer)
[15] Dorodnitsyn V A 1993 A finite-difference analogue of Noether’s theorem Dokl. Akad. Nauk 328 678–82

(in Russian)
[16] Dorodnitsyn V 2001 Noether-type theorems for difference equations Appl. Numer. Math. 39 307–21
[17] Dorodnitsyn V, Kozlov R and Winternitz P 2004 Continuous symmetries of Lagrangians and exact solutions of

discrete equations J. Math. Phys. 45 336–59
[18] Lall S and West M 2006 Discrete variational Hamiltonian mechanics J. Phys. A: Math. Gen. 39 5509–19
[19] Sanz-Serna J M and Calvo M P 1994 Numerical Hamiltonian Problems (London: Chapman and Hall)
[20] Leimkuhler B and Reich S 2004 Simulating Hamiltonian Dynamics (Cambridge: Cambridge University Press)
[21] Cartan E 1922 Lecons sur les invariants integraux (Paris: Librairie Sci. A. Hermann & Fils)
[22] Kane C, Marsden J E and Ortiz M 1999 Symplectic-energy-momentum preserving variational integrators

J. Math. Phys. 40 3353–71
[23] Kozlov R 2007 Conservative discretizations of the Kepler motion J. Phys. A: Math. Theor. 40 4529–39
[24] Dorodnitsyn V A 1991 Transformation groups in difference spaces J. Sov. Math. 55 1490–517
[25] Struckmeier J and Riedel C 2002 Noether’s theorem and Lie symmetries for time-dependent Hamilton-Lagrange

systems Phys. Rev. E 66 066605

17

http://dx.doi.org/10.1007/BF00670715
http://dx.doi.org/10.1007/BF01459410
http://www.arxiv.org/abs/0809.1361
http://dx.doi.org/10.1016/S0168-9274(00)00041-6
http://dx.doi.org/10.1063/1.1625418
http://dx.doi.org/10.1088/0305-4470/39/19/S11
http://dx.doi.org/10.1063/1.532892
http://dx.doi.org/10.1088/1751-8113/40/17/009
http://dx.doi.org/10.1007/BF01097535
http://dx.doi.org/10.1103/PhysRevE.66.066605

	1. Introduction
	2. Invariance of Hamiltonian action and first integrals
	2.1. Applications

	3. First integrals of difference Hamiltonian equations
	3.1. The discrete version of Hamiltonian action
	3.2. Symplecticity of difference Hamiltonian equations
	3.3. Invariance of the Hamiltonian action
	3.4. Discrete Hamiltonian identity and Noether-type theorem
	3.5. Applications

	4. Conclusion
	Acknowledgments
	References

